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We propose a consistentswithout any fitting parametersd statistical theory of classical noble-gas crystals with
pair interaction between atoms. Using the equation for the single-particle distribution function of the statistical
system, we demonstrate the existence of an infinite number of exact sum rules for the amplitudes of the
space-periodic solutions. Even the first sum rule leads to the solution which turns into the exact one at the
absolute zero temperature. For the pair distribution function, we obtained the physically correct solution using
the well-known exact relation for the compressibility as the self-consistent condition. As a result, we succeeded
in recovering the equation of state of the crystal, and starting from the Lennard-Jones potential with the
“gaseous” parameters, we calculated the temperature dependencies of the lattice constant and the isothermal
compressibility of the crystal at the sublimation line. These calculationssincluding the form of the sublimation
line itselfd agree rather well with the corresponding experimental data for the argon-type media in the “clas-
sical” temperature region. The question about the bifurcation of the solutions is considered. Ways to further
develop the theory are discussed.
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I. INTRODUCTION

Creating a consistent theory of freezing-melting for actual
three-dimensionals3Dd media is one of the outstanding prob-
lems of statistical physicsssee, for example,f1g andf2gd. The
investigation of this problem encounters two difficulties of
principle. In the first place, it is necessary to be able to de-
scribe a crystal by the fundamental equations of statistical
mechanics starting from the knowledge of interatomic poten-
tial. In the second place, for the description of the crystal-
liquid transition, one needs to know the thermodynamic
functions of the liquid. During recent decades, some general
relations for the thermodynamic functions of real condensed
media have been establishedf3g and the theory of liquids
experienced impetuous development either on the analytical
level or in the field of computer simulationsssee, for ex-
ample,f4–6g and f7gd. Nevertheless, the construction of the
melting-freezing phase diagram for the actual systems re-
quires rather laborious numerical calculations.

Beginning from Kirkwood and Monroef8g, the freezing-
melting transition was considering in the context of the bi-
furcation phenomenon, i.e., the appearancesdisappearanced
of periodic solutions for the atomic density function of a
statistical systemssee, for example,f9–11gd. However, the
question about the connection between the bifurcation point
and the temperature of freezing-melting of actual media was
left openf12g.

At present, one of the most constructive approaches to the
description of the liquid-solid transition is based on different
versions of the density-functional theoryssee, for example,
f13gd, which has been adapted to the problem of freezing by
Ramakrishnan and Yussoufff14g. The theory operates only
with the one-particle density of the condensed matter but
needs definite information concerning the binary correlations

in it. Such information, in fact, is entirely extracted from the
correlation characteristics of the liquid state assumed to be
known from the experimental data or model calculations.

In order to obtain analytic results in the density-functional
theory of freezing, its modification, known as “the funda-
mental measure density-functional theory,” has been pro-
posedf15g ssee also, for example,f16,17gd. In this case, the
correlations in the fluid mixture of hard spheres are ex-
pressed through the characteristicsweightd functions for the
geometry of the individual spheres.

Thus, in most cases the problem of freezing was analyzed
either in the framework of the model of hard spheressas in
f16gd or by the use of some additional suppositions about the
form of the pair distribution function in the crystal phasesas
in Refs. f8,13,14,18–21gd. In this situation, the construction
of a quantitative theory of freezing on the basis of some
realistic interatomic potential and without the use of anyad
hoc assumptions on the form of the correlation functions in
the crystal phase is the actual problem of fundamental phys-
ics.

Although, in view of the above-mentioned difficulties, the
general approach to the theory of freezing-melting seems too
complicated, one can point out the natural domain relating to
the sublimation part of the phase diagram where the second
of the difficulties does not arise. While there are enough
extensive experimental data for this domain, in particular
concerning the thermodynamic properties of the noble-gas
crystalsssee, for example, Refs.f22–26gd, a consistent theo-
retical interpretation of the sublimation phenomenon has
been absent up to now. It is important to note that no theory
of sublimation could, in principle, be constructed in the
framework of the above-mentioned approaches based on the
hard-sphere model.

In the present paper, we offer a consistentswithout any
fitting parametersd theory of sublimation of the noble-gas
crystals. In Sec. II, being based on the classical equations for
the partial distribution functions of the system with pair in-
teraction between atoms, we find a physically correct func-*Electronic address: bondvic@mail.ru
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tional form of the pair function for the crystal phase. Section
III is devoted to a presentation of the equation for the singlet
function in a form demonstrating the existence of an infinite
number of exact sum rules which essentially facilitate the
determination of suitable spatially periodic solutions. The
problem becomes completely closed if one uses the well-
known relation for the isothermal compressibility of the sys-
tem. In Sec. IV, the self-consistent equations are solved ana-
lytically in the low-temperature limit, and the low-
temperature dependencies of the thermodynamic functions of
the Lennard-Jones crystal are found. ThensSec. Vd, the ex-
pression for the crystal entropy in the main approximation is
obtained and the sublimation curve is derived. Section VI
contains the results of numerical solution of the derived
equations. In Sec. VII, we demonstrate the applicability of
the theory for a quantitative description of the thermody-
namic characteristics of the Lennard-Jones crystal near the
“classical” domain of the sublimation line. We also discuss
different sides of the proposed theory and outline some ways
to develop it further. Finally, in Sec. VIII, a brief summary of
the obtained results is given.

II. BASIC ASPECTS OF THE THEORY

Following Kirkwood and Monroef8g, the crystal phase
can be described by a spatially periodic singlet distribution
function fsr d bearing the information about the local density
of atoms at an arbitrary pointr . fsr d satisfies the first equa-
tion of the BBGKY hierarchy ssee, for example, Refs.
f27,12,28–30gd for the partial distribution functions,

T = fsr d + n0E fsr ,r 8d = Wsur − r 8uddr 8 = 0, s1d

wheren0 is the average number of atoms per unit volume of
the system; the energy of pair interaction of atomsWsur
−r 8ud is assumed to depend on the distance between the par-
ticles, the centers of which are at pointsr and r 8. Equation
s1d connects fsr d with the pair function fsr ,r 8d= fsr 8 ,r d
which satisfies the equation

T = fsr ,r 8d + fsr ,r 8d = Wsur − r 8ud + n0E fsr ,r 8,r 9d = Wsur

− r 9uddr 9 = 0, s2d

wherefsr ,r 8 ,r 9d is the triplet correlation function symmetri-
cal with respect to its arguments. The partial functions are
normalized by the conditions V−1e fsr ddr =1,
V−1e fsr ,r 8ddr 8= fsr d, etc., whereV is the volumesmacro-
scopicd of the system.

For the argonlike systems of interestsincluding their crys-
tal stated, Wsur −r 8ud can be well approximated by the
Lennard-Jones potentialf12,31,32g

Wsur − r 8ud = 4w0Ŵsur − r 8ud,

Ŵsur − r 8ud = FS ur − r 8u
D

D12

− S ur − r 8u
D

D6G , s3d

wherew0 and D are the parameters scaling the energy and
the distance, respectively. As it is knownf31,32g, potential
s3d with w0 andD values determined from the experimental
data for the rare noble gases can be used for the quantitative
description of many characteristicssthe lattice constants, the
cohesive energies, etc.d of the van der Waals crystals. So,
constructing the theory, we will use Eq.s3d with these
sknown from the gas measurementsd values of the param-
eters.

In the fluid state,fsr d=1 and fsr ,r 8d depends onur −r 8u
only f12,27,28g. But in the crystal case,fsr d as well as
fsr ,r 8d, etc., are the spatially periodic functions, i.e., for any
lattice period a it must be fsr +ad= fsr d, fsr +a,r 8+ad
= fsr ,r 8d, etc. Obviously, in the perfectly ordered statesin the
absence of intrinsic defects, i.e., atT=0d,

fsr d =
1

n0
o
a

dsr − ad, s4d

where the sum of Dirac’sd functions is carried out upon all
sincluding the triviala=0d lattice periods.

In what follows, it is convenient to present

fsr ,r 8d = fsr dfsr 8dBsr ,r 8d,

fsr ,r 8,r 9d = fsr dfsr 8dfsr 9dBsr ,r 8,r 9d, s5d

where the new pair functionBsr ,r 8d and the triplet function
Bsr ,r 8 ,r 9d must tend to unity when the interparticle dis-
tances increasef27g and also in the crystal stateBsr +a,r 8
+ad=Bsr ,r 8d, etc. Below we putBsr ,r 8d;Bsr −r 8d sthis
form is necessarily invariant under the translationsd. Repre-
sentations5d means that the main information about the pe-
riodic structure of the crystal is contained in the singlet func-
tion and one can expect that, for example, the functionBsr
−r 8d will be close to unity atur −r 8u.D while at lower dis-
tances it will be close to zerosimpenetrability of the atomsd.

The simplest way to convert Eqs.s1d and s2d into the
closed-form system lies in the utilization of the well-known
Kirkwood’s superposition approximationf12,28g,

Bsr ,r 8,r 9d = Bsr − r 8dBsr − r 9dBsr 8 − r 9d. s6d

As it is known f12g, this approximation is well justified for
the gas phase, but for the liquid its validity is worse. How-
ever, there exists the statementssee the article by Temperley
in Ref. f12gd that approximations6d can again become good
in the crystal phase. Below, we will confirm this statement
finding a physically correct form ofBsr −r 8d suitable for
quantitative description of the sublimation phenomenon of
the noble-gas crystals.

The pair function in the fluid phase automatically depends
on ur −r 8u irrespective of the positionr 8 of the chosen par-
ticle. However, the existence of the long-range order in the
crystal case forces us to ascribe some definite position to the
chosen particle in the coordinate system where the crystal as
a whole is at rest. It is convenient to putr 8=0 in the equation
for the Bsr −r 8d function. Then, substituting Eq.s5d into Eq.
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s2d and taking into account Eq.s6d and Eq.s1d, we come to
the equation

T = Bsr d + Bsr d = Wsrd + n0Bsr d E fsr 9dBsr − r 9dfBsr 9d − 1g

3 = Wsur − r 9uddr 9 = 0, s7d

where the designationr ;ur u is introduced. One can verify
that atT=0, when the singlet function is given by Eq.s4d,
the solution of Eq.s7d is

uBsr duT=0 = Qsr − D8d, s8d

where Qsr −D8d is the step function, equal to unity at the
positive arguments and to zero at the negative ones. Here, the
constantD8 must be less than the absolute value of the mini-
mal nontrivial period 1.09D f31,32g of the fcc crystal of
interest; we will see below thatD8=D.

Let us introduce the Fourier transform of the singlet func-
tion,

fk =
1

V
E dre−ik·r fsr d, f−k = fk . s9d

In the disordered state,fk is zero at allk ’s except k =0:
fk=0=1. On the contrary, for the crystal,fk is nonzero also at
thosek ’s that coincide with all possible vectorsb sincluding
b=0d of the nodes of the reciprocal latticef18,31–33g. For
the fcc crystals of the noble gases, the reciprocal lattice is
bcc and, returning to Eq.s1d, it is convenient to introduce the
dimensionless vectorsL =b /b0, whereb0 is the edge length
of the Bravais bcc cube. In this case, the fcc lattice constant
along the cubic axis is

a0 =
4p

b0
, s10d

while the connectionscf. f33gd

n0 =
b0

3

16p3 s11d

is the important “closing” condition for Eq.s1d. Thus, for the
crystal

fsr d = o
L

fLeib0L ·r , s12d

and, obviously, the amplitudesfL depend onL;uL u.
Equationss1d and s7d have to be added by the known

expressionssee, for example, Refs.f12,27–30gd for the pres-
surep,

p = n0T −
n0

2

6V
E dr E dr 8fsr ,r 8dur − r 8u

dWsur − r 8ud
dur − r 8u

= n0T

−
n0

2

6
E dRBsRdR

dWsRd
dR o

L
fL
2eib0L ·R. s13d

In the “gas” limit sn0→0d, Eq.s7d has the known solution
Bsr d=expf−Wsrd /Tg which, however, is too rough to be used
for the analysis of the freezing problem. One can show a
self-consistent procedure giving a suitable approximate solu-

tion of Eq.s7d without the assumption about the “smallness”
of n0. This procedure is based on the consideration of the
formal limit of “large” r in Eq. s7d, which makes it possible
to expandBsr −r 9d and Wsur −r 9ud on powers ofr 9 in the
integrand. Restricting ourselves to the terms of order zero in
the expansions, one can see that the desired solution will be
spherically symmetrical and will satisfy the ordinary nonlin-
ear differential equation of the first order,

T
dBsrd

dr
+ Bsrdf1 − YBsrdg

dWsrd
dr

= 0 s14d

with the parameter

Y = n0E fsr 9df1 − Bsr9dgdr 9. s15d

Note that taking into account the subsequent terms in the
expansions leads to the fact thatBsr d gains the lattice sym-
metry.

At 0øYø1, Eq. s14d has a continuous solution with the
proper behavior at allr ’s. Introducing the dimensionless tem-
peratureT* =T/w0, we obtain the desired solution,

Bsrd =
1

Y + s1 − Ydexpf4Ŵsrd/T*g
. s16d

Solution s16d, taking into account Eq.s3d, has the single
maximum but the form of this solution at finiteY’s differs
from the “gaseous” onesat Y=0d.

In principle, Eq.s15d could be used for the self-consistent
determination of the parameterY. In fact, this equation is a
consequence of Kirkwood’s superposition approximation.
Because the latter does not have rigorous grounds, one could
hardly estimate the accuracy of conditions15d.

Meanwhile, one can point out a way which allows us to
avoid the difficulties associated with the direct applicability
of the superposition approximation. This way consists of the
use of the well-known exact equation for the isothermal
compressibility of the statistical systemf12,28–30g at the
preservation of the found physically correct forms16d for
Bsrd. For the crystal, this equation is as follows:

TS ]n0

]p
D

T
= 1 +

n0

V
E dr E dr 8ffsr ,r 8d − fsr dfsr 8dg = 1

+ n0E dRfBsRd − 1go
L

fL
2eib0L ·R. s17d

In the next sections, we will use just this equationfbut not
condition s15dg for the self-consistent determination of the
parameterY fwhich is a member of the functionBsrd from
Eq. s16dg.

III. THE SUM RULES AND SELF-CONSISTENT
EQUATIONS

In what follows, it is convenient to transform Eq.s1d to
the Fourier representation. Substituting forms5d for fsr ,r 8d
into Eq.s1d, taking into account conditions11d, and introduc-
ing the dimensionless parameter of the reciprocal lattice
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s =
b0D

2Î2p
, s18d

we come to the equation for the Fourier amplitudes,

T*L fL −
1

p2o
L8

L 8

L83 fL8fL−L8ÎssL8d = 0, s19d

where

ÎssL8d = − i
b0

2L8

4p
E dRBsRd

L 8 ·R

R

dŴsRd
dR

eib0L8·R =E
0

`

djBsjd
dŴsjd

dj
fsins2Î2psL8jd − 2Î2psL8j coss2Î2psL8jdg, L8

; uL 8u. s20d

Here and below we use the designationsBsjd and Ŵsjd,
wherej=R/D, equally withBsRd andŴsRd.

Nonlinear Eq.s19d at L Þ0 has either trivialscorrespond-
ing to a fluidd or, generally speaking, nonzero solutionsfL
describing a crystal state of the system. To choose an appro-
priate construction of the nontrivial solutions, it is useful to
determine their functional form atL→`. To make this, let us
use the Taylor expansionfL−L8= fL −Li8s]fL /]Lid+¯ under
the sum in Eq.s19d. For the fcc crystal, the sums containing
the products of odd numbers of the vectorL 8 components in
Eq. s19d reduce to zero, and in the first nonvanishing order
on the derivatives we obtain the differential equation

fL +
1

b`

dfL
dsL2d

= 0, s21d

where the self-consistent quantity 1/b` is defined as

1

b`

=
2

3p2T* o
L8

1

L8
fL8ÎssL8d. s22d

The solution of Eq.s21d at L→`,

fL ~ exps− b`L2d, s23d

has the physical meaning atb`ù0 only; the series in Eq.
s22d converges, obviously, at finiteT* .

From Eq.s19d follows the infinite number of exact sum
rules facilitating a regular procedure of determination of the
nontrivial solutionsfL . To derive these rules, note that the
term with L 8=0 disappears identically from the sum in Eq.
s19d, which by itself turns into the identity atL =0. Consid-
ering fL , fL−L8 as the continuous functions of their argu-
ments, assumingL as the vector with arbitrary small but
finite lengthL, and employing now the Taylor expansion of
these functions on the vectorL components, one can present
the left-hand side of Eq.s19d as the series on the powers of
L2 beginning with the first one. Then, equating to zero the
coefficients at each power ofL2, we can obtain any number
of exact sum rules for this equation. Let us write out the first
and the second of them,

T* +
2

3p2o
L8

1

L8
fL8

dfL8

dsL82d
ÎssL8d = 0, s24d

T*U dfL
dsL2d

U
L=0

+
2

3p2o
L8

1

L8
fL8F d2fL8

dsL82d2

+
2

5
L82

d3fL8

dsL82d3G ÎssL8d = 0. s25d

Asymptotic behaviors23d suggests the choice of the ap-
proximate solution of Eq.s19d at arbitraryL ’s. So, in the
simplest approximation it is naturally to set

fL = exps− bL2d, s26d

where the positive parameterb is subject to determinationfat
L=0, function s26d, as it should, reduces to unityg. In this
case, according to Eq.s12d,

fsr d = o
L

e−bL2+ib0L ·r . s27d

It is important to note that the parameterb is closely
connected with the thermal excitations, either oscillatory or
responsible for the defect structure of the crystal. The present
theory, being extremely nonlinear, does not need the special
introduction of such model characteristics of the defect as the
activation energy, etc. In the framework of the classical sta-
tistics atT=0, i.e., in the absence of lattice vibrations and
crystal defects, it is obvious thatb=0 and Eq.s27d is reduced
to Eq. s4d. Substituting Eq.s27d into the first sum rules24d,
we find the self-consistent equation for the determination of
the parameterb,

T* −
2b

3p2 o
LÞ0

1

L
e−2bL2

ÎssLd = 0. s28d

The sum over the reciprocal-lattice vectors in Eq.s28d
converges rather well at not too smallb. However, as will be
shown below,b<0.1 even atT* ,1 snote that the dimen-
sionless temperature of the triple point for argon is<0.7
f24gd. This means that for the description of the sublimation
phenomenon of the noble-gas crystals, it is appropriate to
transform Eq.s28d to a form containing a fast-convergent
sum atb→0 over the direct lattice vectorsa. Such a proce-
dure is based on the equality known as the theta-function
transformationf34g and in application to Eq.s27d this equal-
ity gives
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fsr d = 2Sp

b
D3/2

o
a

e−sr − ad2b0
2/s4bd. s29d

Representations29d is often used at the investigation of the
freezing problemssee, for example,f13,18,35gd.

Using Eq.s29d instead of Eq.s27d, taking into account Eq.

s20d, and passing to the dimensionless vectorsĥ=sa/D of
the fcc lattice, we can transform Eq.s28d to the following
form:

T* −
8p5/2s3

3b3/2 E
0

`

djj3dŴsjd
dj

Bsjde−p2s2j2/b −
Îb

3p3/2 o
ĥÞ0

1

ĥ
E

−`

`

dj
dŴsjd

dj
BsjdF1 −

2p2

b
sjsĥ − sjdGe−p2sĥ − sjd2/b = 0. s30d

Here, we used the formal invariance ofŴsjd andBsjd with
respect to the changej→−j.

Performing the analogous procedure of transformation to
Eqs.s17d ands13d and introducing the dimensionless density
n0

* =n0D
3=Î2s3 and pressurep* =pD3/w0, we get

T*S ]n0
*

]p* D
T*

−
4p5/2s3

b3/2 E
0

`

djj2Bsjde−p2s2j2/b

−Îp

b
s2o

ĥÞ0

1

ĥ
E

−`

`

djjfBsjd − 1ge−p2sĥ − sjd2/b = 0,

s31d

p* = Î2s3T* −
8Î2p5/2s6

3b3/2 3 E
0

`

djj3dŴsjd
dj

Bsjde−p2s2j2/b

−
2Î2ps5

3Îb
o
ĥÞ0

1

ĥ
E

−`

`

djj2dŴsjd
dj

Bsjde−p2sĥ − sjd2/b.

s32d

In what follows, the well-known expressionssee, for ex-
ample,f12,27–30gd for the energye per atom of the crystal
will be used. Being transformed with the help of the proce-
dure applied above, the expression for the dimensionless en-
ergy e* ;e /w0 becomes as follows:

e* =
3

2
T* +

8p5/2s3

b3/2 E
0

`

djj2ŴsjdBsjde−p2s2j2/b

+ 2Îp

b
s2o

ĥÞ0

1

ĥ
E

−`

`

djjŴsjdBsjde−p2sĥ − sjd2/b.

s33d

Equationss30d–s32d fsimultaneously with Eqs.s3d and
s16dg represent the closed system from which one can estab-
lish a single-valued parametric connectionsby means of the
parametersb andYd betweenp* , T* , and the lattice constant
a0=Î2D /s of the crystal. This connection leads to an equa-
tion of state which for givenp* will describe a real crystal
phase at temperatures lower than the freezing temperature
sdepending onp*d. In the case of the crystal-gas transition,

the dimensionless pressures at the sublimation line are small
seven in the triple point of argonp* ,10−3 f26gd. This fact
noticeably simplifies the procedure of determination of the
lattice constant and other thermodynamic functions near the
sublimation linessee belowd.

IV. THE THEORY IN THE LOW-TEMPERATURE LIMIT

The found solutions16d, taking into account Eq.s3d, pos-
sesses a relevant behavior atT* →0. In this case, allfL =1,
uYuT*→0→1−0 sbelow we will show this rigorouslyd, and
BusRduT*→0→QsR−Dd fi.e., D8=D in Eq. s8dg. As a result,
Eq. s17d with fsr d from Eq. s4d turns into an identity.

It is useful to consider Eq.s32d at low temperatures by the
scheme stated in Appendix A. Choosing the function

j2dŴsjd /dj as Gsjd in Eq. sA1d and acting as when calcu-
lating Eq.sA2d, we obtain

p* = Î2s3T* − 4Î2s9FA6 − 2s6A12 +
3b

2p2s5A8 − 44s6A14dG ,

s34d

where the knownf31,32g fcc lattice sumsAn are defined by
Eq. sA3d. Then from Eq.s34d at T* =0 swhen b=0, see be-
lowd for the free crystalsp* =0d, it follows that

ss0d ; usuT*=0 = S A6

2A12
D1/6

= 0.9173. s35d

From Eq.s30d, one can determine the explicit temperature
dependence ofb at T* →0. Again, applying the scheme de-
veloped in Appendix A, we transform Eq.s30d to within the
main terms to the form

T* −
2bs6

p2 s22s6A14 − 5A8d = 0. s36d

Now, changings in Eq. s36d by ss0d from Eq. s35d, we find
the following expression for the parameterb at T* →0:

b =
p2A12

2 T*

A6s11A6A14 − 5A8A12d
= 0.088 11T* . s37d

It is important to note that solutions29d fas well as Eq.
s27dg for the singlet function together with expressions37d
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for b turn out to be exact atT* →0 in the framework of the
classical statistics. This statement follows directly from the
fact that the low-temperature value of the heat capacity in
our theoryssee Appendix Ad is determined by the classical
Dulong and Petit lawf32,33g.

However, these results are based on the assumption about
the overlinear character of the temperature dependence ofY
at T* →0. The explicit expression forY, derived in Appendix
B and applicable at low temperatures, confirms this assump-
tion. Substituting the numerical values of the lattice sumsAn
ssee Appendix Ad into Eq. sB3d, we obtain

uYuT*→0 = 1 − 7.9423 10−4T*3/2. s38d

Thus, due to obtained dependences38d, one can really put
Bsjd=Qsj−1d when calculating the contributions linear on
T* into Eqs. s30d–s33d. Pay attention to the smallness
s,10−3d of the numerical factor in expressions38d.

Besides, the theory allows us to calculate the coefficient
of thermal expansiona of the Lennard-Jones crystal in the
limit T* →0. Although the result of the calculation does not
follow the Nernst theoremsbecause the nonquantum ap-
proach is usedf33gd, it seems rather instructive.

We will base the calculation on expressions34d. Now, the
zero-temperature valuess0d from Eq. s35d should be substi-
tuted into the terms,T* and,b in Eq. s34d. Other terms on
the right-hand side of Eq.s34d should be expanded up to the
first nonvanishing term,ds /ss0d;ss−ss0dd /ss0d. Because
we are interested in the thermal expansion of the free crystal,
the pressure given by Eq.s34d must be equal to the pressure
of the saturated vapor being in the thermodynamic equilib-
rium with the crystal. But the vapor pressure atT* →0 be-
haves according to the Clapeyron-Clausius equationf33g,
i.e., as,exps−8.607/T*d ssee the next sectiond. So, atT*

→0 one can neglect this exponentially low vapor pressure
and write the equilibrium condition for the crystal in the
form

p* =Î A6

A12
T*S1 + 3

22A6A14 − 5A8A12

11A6A14 − 5A8A12
D + 12A6S A6

A12
D3/2 ds

ss0d

= 0. s39d

Proceeding to the relative change of the lattice constant
da0/a0

s0d=−ds /ss0d sa0
s0d;Î2D /ss0dd, we find from Eq.s39d

the low-temperature value of the linear coefficient of thermal
expansion of the crystal,

as0d =
1

a0
U ]a0

]T
U

T→0
=

A12

12w0A6
2

77A6A14 − 20A8A12

11A6A14 − 5A8A12
. s40d

From here, for argonsw0=121 K f31,32gd, we obtainas0d

=3.62310−4 K−1.
The foundas0d is approximately half of thea value mea-

sured experimentally at the triple-point temperature of argon
f24g. In Sec. VI, we will show that our theory leads to a
noticeable growth ofa of the Lennard-Jones crystal with the
temperature.

V. THE EQUILIBRIUM SUBLIMATION OF THE
LENNARD-JONES CRYSTALS

To find the sublimation line on the phase diagram of the
noble-gas medium, it is necessary to add to Eqs.s30d–s32d
the conditions expressing the equality of the chemical poten-
tials of the crystal and its saturated vapor at one and the same
pressure of the coexisting phases. The problem is simplified
due to the fact that the vapor phase can be described with
good accuracy in the ideal gas approximation. However, one
encounters the following complication. Unlikep and e, the
entropy per particles as well as the chemical potentialf33g

m = e − Ts+
p

n0
s41d

are formally expressed through the whole of the correlation
functions of the mediumf28,29g. In other words,s can be
written in the formssee, for example,f28gd

s= 5/2 + lnFS mT

2p"2D3/2 1

n0
G +

1

TV
E drC1sr dfsr d

+
n0

2TV
E dr E dr 8C2sr ,r 8dfsr ,r 8d

+
n0

2

6TV
E dr E dr 8E dr 9C3sr ,r 8,r 9dfsr ,r 8,r 9d + ¯ .

s42d

Here, “the ideal gas” part of the entropyf33g swith m as the
atomic massd is represented explicitly and the so-called cor-
relation potentials of the groups of particles are introduced,

C1sr d = − T ln fsr d, C2sr ,r 8d = − T lnF fsr ,r 8d
fsr dfsr 8d

G ,

C3sr ,r 8,r 9d = − T lnF fsr ,r 8,r 9dfsr dfsr 8dfsr 9d
fsr ,r 8dfsr ,r 9dfsr 8,r 9d

G, . . . .

s43d

Nevertheless, the problem of interest can be resolved
quantitatively. In fact, in Kirkwood’s approximations6d we
haveC3sr ,r 8 ,r 9d;0 and so the nextsafter the two-particled
nonzero contribution into the entropy will correspond to the
four-particle correlations. But taking into account the latter
ones oversteps the limits of the accepted approximation
based on the equations for the singlet and pair correlation
functions. So, we can restrict ourselves to the next form of
the entropy of the crystal phase,

s= 5
2 + lnFS mT

2p"2D3/2 1

n0
G −

1

V
E dr fsr dln fsr d

−
n0

2V
E dr E dr 8fsr dfsr 8d 3 Bsur − r 8udlnBsur − r 8ud.

s44d

Pay attention to the fact that the structure of Eq.s44d re-
sembles somewhat the form of the thermodynamic potential
used in the density-functional theory of freezingf13g. Note,
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however, that in the present approach either the singlet or the
pair correlation functions of the crystal are determined self-
consistently, without the use of any excess information about
the two-body direct correlation function of the corresponding
liquid.

Let us turn our attention to the first integral term on the
right-hand side of Eq.s44d. Using representations29d, which
at b!1 is the sum of thed-like functions, one can replace
the integral by the sum ofN equal integrals, constructed with
the help of any of these functionssN=n0V is the whole num-
ber of the nodes in the volumeVd. In view of the fast con-
vergence of the integrals, one can extend the integration on
the whole space. Then, bearing in mind Eq.s11d, we obtain
at b!1

1

V
E dr fsr dln fsr d = lnF2S p

eb
D3/2G . s45d

As to the last term on the right-hand side of Eq.s44d, it
can then be reduced to the form

−
2p5/2s3

b3/2 E
0

`

djj2BsjdlnfBsjdge−p2s2j2/b

−Îp

b

s2

2 o
ĥÞ0

1

ĥ
E

−`

`

djjBsjdlnfBsjdge−p2sĥ − sjd2/b. s46d

At b!1, the functionBsjd in the integrands under the sum is
close to unity in the essential domain of integration. So, one
can replaceBsjdlnfBsjdg by Bsjd−1. After that, comparing
with Eq. s31d and using the results of Appendix B, we esti-
mate Eq.s46d as<−T*A12/ s8A6

2d~−0.01T* .
Now, substituting Eq.s45d into Eq. s44d and neglecting

Eq. s46d, we can write the conditionm=mG sthe quantities
relating to the gas phase are characterized by the subscript
“G” d using the knownf33g expressions for the thermody-
namic functions of the ideal gas. Then, neglectingp/n0 in
comparison withp/n0G we find the following equation in the
dimensionless units:

ln p* =
e*

T* − 4 + lnFS2p

b
D3/2

s3T*G , s47d

wheree* is determined by Eq.s33d.
Equation s47d stogether with the equations obtained in

Sec. IIId determines the theoretical sublimation line on the
phase diagram of the Lennard-Jones medium.

VI. THE NUMERICAL CALCULATION SCHEME AND
RESULTS

To calculate the thermodynamic characteristics of the
Lennard-Jones crystal in the “classical” domain of tempera-
tures, we have undertaken the numerical solution of Eqs.
s30d–s32d. The strategy of the calculations is as follows. Let
us fix some temperature and find the valuesb, s, andY as
the solutions of Eqs.s30d ands31d, and the requirement that
the sublimation pressures32d must be close to zerof26g.
Keeping in mind the calculation of the isothermal compress-
ibility of the crystal in the vicinity of the sublimation line,

we will search two sets of solutions:s1,b1,Y1 ands2,b2,Y2
at somewhat distinguishingp* ’s for each temperature.

Finding the parametersb, s, andY, we, in principle, can
obtainp* either positive or negative. Although the negative-
ness of the pressure is the feature of a metastable statef33g,
in itself the possibility of the description of such states by the
theory undoubtedly demonstrates its completeness. It is im-
portant, however, that for any equilibrium physical situation,
the pressure, of course, will be positivefsee Eq.s47dg.

The low-temperature analytical expressions obtained in
Sec. IV are suitable atT* Þ0 as the zero approximations for
the corresponding numerical solutions of Eqs.s30d–s32d. The
numerical analysis of these equations has been realized by
the use of the computer packageMATHEMATICA 4.2. The val-
ues of the terms with 1ø ĥø7Î2 in the lattice sums were
found by direct numerical calculation taking into account the
fcc symmetry. The residues of the sums were replaced by the

corresponding integrals in theĥ space by analogy with what
has been made when transferring to Eq.sB2d. In this case,
rather high accuracy of the calculations was achieved. The
numerical procedure was considered as realized when the
absolute values of the left-hand sides of Eqs.s30d and s31d
were found to be less than 10−6.

We should address separately the calculations by Eq.s31d,
which, in fact, represents by itself the differential relation
between the thermodynamic quantities. It is essential, how-
ever, that we know the exactsin the framework of the clas-
sical statisticsd value of the isothermal compressibility of the
Lennard-Jones crystal atT* =0. Using this value as the zero
approximation in Eq.s31d at some given low temperature,
for example atT* =0.25, we will carry out the numerical
calculations ofs1,b1,Y1 ands2,b2,Y2. From here, we will
find a newscorresponding to the first approximationd value
of the isothermal compressibility atT* =0.25. After that, we
will fulfill the calculation with this new value of the com-
pressibility and, using the results of the calculation, we will
find the isothermal compressibility in the second approxima-
tion. By comparison with the calculations of the first ap-
proximation, we will make sure there is good convergence of
the numerical procedure used.

Then, we choose the following value:T* =0.35. Substitut-
ing into Eq.s31d as the zero approximation the value of the
isothermal compressibility found in the second approxima-
tion at the previous,T* =0.25, temperature, we will repeat the
above described procedure of finding the sets of solutions
and the isothermal compressibility atT* =0.35.

In this way, we have calculated the pointed out values at
T* =0.25, 0.35, 0.45, 0.55, 0.65, and 0.6875sthe last value,
being multiplied byw0=121 K f31,32g, corresponds to the
temperature 83.2 K of the triple point of argonf24gd. In ad-
dition, the formal calculations have been performed also at
the temperatureT* =0.75, which exceeds the triple-point
temperature of the Lennard-Jones media. The isothermal
compressibility

xT =
1

n0
S ]n0

]p
D

T
=

D3

w0

1

n0
* S ]n0

*

]p* D
T*

= 3
D3

w0

1

s
S ]s

]p* D
T*

s48d

has been found from the results of the numerical calculations
by means of the replacement of the derivative by the ratio of
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the finite differencesfss1−s2d / sp1
* −p2

*dgT* swith 1/s being
intermediate between 1/s1 and 1/s2 at each temperatured.

The numerical calculation of the parameters according to
the above-described scheme led in the first approximation to
the results shown in Table I.

Remember that atT* =0 for the free crystalswhen Y=1,
p* =0d we have ss0d from Eq. s35d and s]n0

* /]p*dT*=0

=A12/ s4A6
2d=0.014 52.

To illustrate the above-mentioned statement about the
good convergence of the numerical procedure, we give in
Table II the parameter values calculated in the second ap-
proximation atT* =0.75 fcompare the values ofs]n0

* /]p*dT*

in Tables I and IIg.

VII. DISCUSSION OF THE RESULTS

In Fig. 1, the experimentalscollected in Ref.f24gd values
of the lattice constanta0 of argon at the saturated vapor
pressures are given. Crosses show the theoreticalssee Table
Id values ofa0=Î2D /s, whereD=3.40 Å for argonf31,32g
swith s situated betweens1 ands2 at each temperatured. The
calculated values ofa0 are connected by a smooth curve in
the temperature domain where the experimental data are well
described by the theory based on the classical statistics. In
addition, the dashed line in Fig. 1 shows the hypotheticalsin
the zero approximationd temperature dependence ofa0 if one
should use the zero-temperature valueas0d=3.62310−4 K−1

fsee Eq.s40dg in the whole temperature range.
The quantitative closeness between the theory and experi-

mental data atTù30 K, orT* ù0.25sFig. 1d, means, in fact,
that the domain of applicability of the proposed classical
approach begins fromT* <0.25. It is interesting to note that
the temperature at whicha0 comes to the classical behavior
is consistent with the results of the Debye modelf33g pre-
dicting the classical behavior of the specific heat of the solid

at T@QD /4, whereQD is the Debye temperature of the crys-
tal; QD=85 K for argonf32g.

Numerically, the difference between the calculated and
measured temperature dependencies ofa0 for argon even
near the triple point does not exceed 0.5%sFig. 1d. It is
useful to note that the difference between the dashed line and
the experimental data near the triple pointsFig. 1d is <1%.

In Fig. 2, the experimentalsaccording to the data col-
lected in Ref.f22gd values of the isothermal compressibility
of the crystal argon at the saturated vapor pressure are pre-
sented. The results of calculation according to the theoryfsee
Eq. s48d and Table Ig are represented by the crosses and are
connected by the smooth curve. Again, as in Fig. 1, one can
see good quantitative agreement between the theory and ex-
periment at temperatures above 30 K. But when approaching
the triple point, the theoretical results are found to be under-
estimated in comparison with the experimental datasnotice,
however, the rather large-scale scatter of the experimentalxT
values reported by different authorsd.

Finally, in Fig. 3 the experimentalsfrom f26gd points de-
termining the dimensionless sublimation lines of three clas-
sical noble-gas crystals are collected. The crosses show the
theoreticalfwith formulass47d and s33d taking into account
the data of Table Ig values ofp* . The curve, which rather
well approximates the theoretical points, is described by the
equation

ln p* = l* −
q*

T* s49d

with l* =4.527 andq* =8.104. Note that the curve fitting the
experimental data in Fig. 3 in the bestsby the method of least
squaresd manner is presented inf26g in the form of Eq.s49d
with l* =5.302 andq* =8.206. Pay attention to the proximity
of the theoretical and experimentalq* values in the discussed

TABLE I. The numerical values of the parameters of the distribution functions, together with the ther-
modynamic values of the Lennard-Jones crystal in the vicinity of the sublimation linesthe first
approximationd.

T* 0.25 0.35 0.45 0.55 0.65 0.6875 0.75

s1 0.9049 0.9012 0.8969 0.8919 0.887 0.8851 0.8815

102b1 2.335 3.283 4.283 5.373 6.529 7.005 7.832

103s1−Y1d 0.187 0.376 0.603 1.018 1.719 2.13 2.694

102p1
* 0.05575 0.8624 5.063 0.4857 0.4941 0.6986 0.7613

s2 0.9047 0.9011 0.8965 0.8918 0.887 0.8849 0.8813

102b2 2.341 3.287 4.302 5.385 6.536 7.017 7.851

103s1−Y2d 0.188 0.377 0.604 1.019 1.72 2.132 2.698

102p2
* −3.412 −0.664 −0.1029 −1.633 −0.5189 −0.9181 −1.314

102s]n0
* /]p*dT* 1.874 2.031 2.173 2.501 2.735 2.854 3.082

TABLE II. The same as Table I in the second approximationsT* =0.75d.

s1 102b1 103s1−Y1d 102p1
* s2 102b2 103s1−Y2d 102p2

* 102s]n0
* /]p*dT*

0.8816 7.836 2.932 1.79 0.8813 7.873 2.94 −2.209 3.083
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temperature domainfat T* =0, the dimensionless heat of
sublimation of the Lennard-Jones crystal coincides with
u−e* uT*=0=A6

2/ s2A12d=8.607; see Eqs.sA4d and s35dg.
Figure 3 is of particular interest. The fact that the theoret-

ical sin the dimensionless unitsd sublimation line passes close
enough to the experimental points for the “classical” noble-
gas media may mean that the terms taken into account in the
expression for the solid-state entropy are, really, much more
essential than the rejected ones. Thus, the general arguments
of the theory get the additive confirmation.

As to the observed disagreement between the theory and
the experimental data in Figs. 1–3, at low temperatures it is
conditioned, as has been already mentioned, by the quantum
effects. The conventional quantum theory of solids is well-
developed in the harmonic approximationf32,36,37g, but it

FIG. 1. The temperature dependence of the lattice constant of
argon at the saturated vapor pressure. Solid circlessPd denote the
experimental data off24g; s, 3, L, n indicate the data of other
authors shown inf24g. The results of calculations according to our
theory are denoted by1 and connected by a smooth curve in the
region of applicability of the classical statistics. The dashed straight
line corresponds to the theoretical calculation in the zero approxi-
mation fsee Eq.s40dg.

FIG. 2. The isothermal compressibility of crystal argon vs tem-
perature. Solid circlessPd represent the experimental data off24g;
s indicate the data off22g; 3, L, n indicate the data of other
authors shown inf22g. The results of calculations according to our
theory are denoted by1 and connected by a smooth curve in the
region of applicability of the classical statistics.

FIG. 3. The experimentalsaccording tof26gd dependencies of
the sublimation pressure vs temperaturesin the reduced unitsd for
Ar sLd, Kr ssd, and XesPd. The results of calculations according
to our theory are denoted by1 and connected by the curvefrepre-
sented by Eq.s49d with the parameter values given in the textg.
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cannot be used, in principle, for the purposes of the present
papersin order to describe, for example, the thermal expan-
sion of the crystald. On the other hand, the anharmonic pho-
non theoryssee, for example,f37gd operating with many-
phonon processessusually with three- and four-phonon onesd
meets the well-known difficulties, the first of which is com-
putational. So, the construction of a quantum analog of the
theory proposed in the present paper is the actual but not
simple problem.

One more reason for the disagreement can be stipulated
by the use of the pair Lennard-Jones potential with the “gas”
values of the parametersf32g. For the condensed matter, the
role of three-body forces could also be found to be important
f12,32g.

It is useful to note that the theoretical sublimation curve
fEq. s47dg can be formally continued beyond the triple point
temperaturessee Tables I and IId. In this sense, the triple
point is not a singular one for the thermodynamic functions.
But to locate it, one must study the phase equilibrium be-
tween the crystal and the liquid. In light of the results pre-
sented in this paper, now we have the possibilitysapparently
for the first timed to approach the problem of melting from
the positions of the consistent theory of the crystal state.
Concerning the theory of liquids, at present one has a num-
ber of sufficiently valid approaches in this fieldsf4–7g; see
also, for example, Refs.f38–40gd. It gives us hope to achieve
a consistent description of the phase equilibrium for the
Lennard-Jones medium in the wholep* -T* plane.

Let us touch upon the question of the bifurcation line
which separates the domain of possible existence from the
domain of the absence, in principle, of the crystal solutions
at the phase diagram of the Lennard-Jones system. In fact,
the identification of the melting point with the bifurcation
point was realized, beginning from Kirkwood and Monroe
f8g, by many authorssfor example,f9–11gd. In the commu-
nication f41g presented by the author at the International
Conference on Theoretical PhysicssTH-2002, Parisd, the
phenomenon of bifurcation was analyzed in connection with
the freezing problemfhowever using conditions15d, but not
the strong relations17dg.

On the other hand, using some model form for the pair
function and studying the equation for the singlet function of
the statistical system, the authors of Ref.f21g came to the
conclusion that the physical characteristics in the bifurcation
point do not correspond to those taking place in real sub-
stances at melting.

In fact, this conclusion is consistent, qualitatively, with
that following from the results of the present paper. In fact,
because at a given temperature the crystal must become
harder when the pressure increases, one can expect the bifur-
cation of the solution at lowering pressure. As one can see
from Table I, the crystal solutions exist in the negative pres-
sure domain as wellsi.e., formally, when the crystal is under
a uniform extensiond. This means that at the bifurcation line,
the pressure will surely be negative, at least forT* ,0.75.
Thus, we arrive at the definite conclusion that the bifurcation
points do not have a direct relation to the melting-freezing
phenomenon for real systems, at least in the vicinity of the
triple point of the noble-gas media.

Besides, using the calculation scheme described, one can
make sure that Eqs.s30d–s32d have an additional branch of

solutions. However, the bifurcation problem in this case
turns out to be absolutely irrelevant, because the additional
branch by itself demonstrates a nonphysical behavior which
is inconsistent with the limiting forms4d. To verify this, we
take notice of the fact that in the limitT* =0 sandp* =0d, Eq.
s30d, besides the physically correct solutions37d, allows a
nonzero solution forb. The latter, according to the numerical
calculations, is found to be equal to 0.1797. In this case, for
s we obtained the value 0.9628, which contradicts the exact
sin the framework of the classical statisticsd result s35d.
Hence, we come to the conclusion that the additional branch
does not have a physical meaning and must be rejected.

From here one more, albeit indirect, conclusion follows.
As we have shown in this paper, the only singlet and pair
functions leading to the exact results in the limit of the per-
fect crystal can provide a correct description of the crystal
state, including the phenomena of sublimation and melting.
So, any attempt to study the problem of freezing by model-
ing the pair function of the crystal with the help of one or
another suppositionsfor example, starting from the pair func-
tion of the liquidd must be considered extremely carefully.

Finally, let us outline briefly the ways to further develop
the theory. In the first place, from Figs. 1–3 one can see a
tendency to deviate between theory and experiment. This
may indicate that the simplest forms26d, based on the first
sum rule, is no longer enough to lead to the precision de-
scription of the “high-temperature” experiments. So, to make
the theoretical results more precise, it is necessary to use the
second sum rule. In the second place, an extension of the
theory in the case of crystal-liquid equilibrium seems to be
the most important continuation of the investigations started
in this paper. In the third place, having in mind the low-
temperature phenomena in the crystals, it would be desirable
to develop a quantum-statistical analog of the theory given in
the present paper.

VIII. CONCLUSIONS

Starting directly from the equations for the singlet and
pair correlation functions of the classical statistical medium
with pair sfor example, by Lennard-Jonesd interaction be-
tween atoms, for the first time we constructed a consistent
sfree of any fitting parametersd theory describing the thermo-
dynamic properties of the noble-gas crystals. The equation
for the singlet function is presented in a form demonstrating
the existence of an infinite number of exact sum rules for the
amplitudes of space-periodic solutions. It is shown that al-
ready the first of the rules leads to the solutions which repro-
duce the exact form of the singlet function in the crystal at
absolute zero. For the pair function, we obtained the self-
consistent, physically correct form depending on the param-
eter determined by the integrated statistical characteristics of
the system. To make the theory completely closed, we used
the known exact relation for the isothermal compressibility
of the system. As a result, the equation of state of the crystal
can be recovered. The theory allows us to obtain the analyti-
cal expressions for the fundamental thermodynamic charac-
teristics of the crystal in the main approximation, whereas
subsequent numerical calculations lead to more exact results.
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These results agree rather well with the corresponding ex-
perimental data for argon in the temperature region where
the classical statistics is applicable. Further, we obtained the
expression for the crystal entropy in the main approximation
and constructed the sublimation curve, which with satisfac-
tory accuracy reproduces that measured experimentally for
the classical noble-gas media. The analysis of the phenom-
enon of bifurcation of the found solutions showed that the
bifurcation points are placed outside the domain of pressures
and temperatures typical for the freezing of the real noble-
gas media. Ways to further develop the theory are discussed.
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APPENDIX A

At T* →0, the power-type terms onT* in Eqs. s30d–s33d
appear from the integrals containing thed-like functions

expf−p2sĥ−sjd2/bg in the integrands withĥÞ0. To find
such terms, let us use the following expansion atb→0:

E
−`

`

djGsjde−p2s2sj − ĥ/sd2/b = U 1

s
Îb

p
FGsjd +

b

4p2s2

d2Gsjd
dj2

+ ¯ GU
j=ĥ/s

, sA1d

where Gsjd is any function having no singularities at the

pointsj= ĥ/s.

The functionGsjd=jŴsjdBsjd, which is present in the
integrands of the terms under the sums33d, possesses such a
property and alsostaking into account the overlinear tem-

perature dependence ofYd it is enough to putBsĥ/sd=1.
Then we have from Eq.s33d in the low-temperature limit

e* = 3
2T* + 2s6ss6A12 − A6d +

3s6b

p2 s22s6A14 − 5A8d,

sA2d

whereA6=14.45,A8=12.80,A12=12.13, andA14=12.06 are
the known numerical values for the fcc lattice sumsf31,32g,

An = o
ĥÞ0

1

ĥn
,ĥ ; uĥu. sA3d

At last, substitutingss0d from Eq. s35d into the term,b in
Eq. sA2d and also taking into account Eq.s37d, we obtain

e* = 3T* + 2s6ss6A12 − A6d. sA4d

As a result, we find from Eq.sA4d that the heat capacity per
atom of the classical crystal at constant volumeV sor, iden-
tically, at constants=ss0dd in the limit T* →0 is equal to
us]e* /]T*dsuT*=0=3, which coincides with the classical
Dulong-Petit valuef32,33g.

APPENDIX B

To find the temperature dependence ofY at T* →0, we
will start with Eq. s31d. Then, obtaining Eqs.s34d and s36d
and omitting terms inessential atT* →0 fas when obtaining
Eqs.s34d and s35dg, we arrive at the equation

T*S ]n0
*

]p* D
T*

= s1 − Yd 3 o
ĥÞ0

1 − expf4Ŵsĥ/sd/T*g

Y + s1 − Ydexpf4Ŵsĥ/sd/T*g
.

sB1d

The sum in Eq.sB1d diverges atT* →0 because a vast do-

main of the lattice vectors withĥù1 contributes to the sum.
In this case, one can replace the sum by the integral keeping
in mind that the Bravais cube of the fcc lattice contains four
primary cells f33g. Besides, we can putY=1 in the terms
under the sumsintegrald in Eq. sB1d. Then the latter turns
into the following equation:

T*S ]n0
*

]p* D
T*

= s1 − Yd4
4p

23/2 3 E
1

`

dĥĥ2f1 − e4Ŵsĥ/sd/T*
g.

sB2d

In the limit T* →0, as one can see, the expression in the
square brackets in the integrand can be approximately re-
placed by unity ats1/sd,j,21/3T*−1/6; at 21/3T*−1/6,j
,`, one can expand the exponential retaining two leading
terms of the expansion. After that, the right-hand side of Eq.
sB2d up to the main terms becomes as follows: 16Î2ps3s1
−Yd / s3ÎT*d. At last, finding the derivatives]p* /]n0

*dT*=0

=4A6
2/A12 with the help of Eqs.s34d and s35d, we obtain

us1 − YduT*→0 =
3A12

3/2

64pA6
5/2T*3/2. sB3d
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