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Statistical theory of noble-gas crystals and the phenomenon of sublimation
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We propose a consistefwithout any fitting parameteystatistical theory of classical noble-gas crystals with
pair interaction between atoms. Using the equation for the single-particle distribution function of the statistical
system, we demonstrate the existence of an infinite number of exact sum rules for the amplitudes of the
space-periodic solutions. Even the first sum rule leads to the solution which turns into the exact one at the
absolute zero temperature. For the pair distribution function, we obtained the physically correct solution using
the well-known exact relation for the compressibility as the self-consistent condition. As a result, we succeeded
in recovering the equation of state of the crystal, and starting from the Lennard-Jones potential with the
“gaseous” parameters, we calculated the temperature dependencies of the lattice constant and the isothermal
compressibility of the crystal at the sublimation line. These calculatioictuding the form of the sublimation
line itself) agree rather well with the corresponding experimental data for the argon-type media in the “clas-
sical” temperature region. The question about the bifurcation of the solutions is considered. Ways to further
develop the theory are discussed.
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[. INTRODUCTION in it. Such information, in fact, is entirely extracted from the
] ) ) ] correlation characteristics of the liquid state assumed to be
Creating a consistent theory of freezing-melting for actualnown from the experimental data or model calculations.
three-dimensiondBD) media is one of the outstanding prob-  |n order to obtain analytic results in the density-functional
lems of statistical physicsee, for exampld1l] and[2]). The  theory of freezing, its modification, known as “the funda-
investigation of this problem encounters two difficulties of mental measure density-functional theory,” has been pro-
principle. In the first place, it is necessary to be able to deposed[15] (see also, for exampl¢16,17]). In this case, the
scribe a crystal by the fundamental equations of statisticatorrelations in the fluid mixture of hard spheres are ex-
mechanics starting from the knowledge of interatomic potenpressed through the characteristiceight functions for the
tial. In the second place, for the description of the crystal-geometry of the individual spheres.
liquid transition, one needs to know the thermodynamic Thus, in most cases the problem of freezing was analyzed
functions of the liquid. During recent decades, some generadither in the framework of the model of hard sphefes in
relations for the thermodynamic functions of real condensedi16]) or by the use of some additional suppositions about the
media have been establishfg8] and the theory of liquids form of the pair distribution function in the crystal phases
experienced impetuous development either on the analyticdl Refs.[8,13,14,18-2]. In this situation, the construction
level or in the field of computer simulatiorisee, for ex- of a quantitative theory of freezing on the basis of some

ample,[4—6] and[7]). Nevertheless, the construction of the €alistic intératomic potential and without the use of aty
melting-freezing phase diagram for the actual systems rehoc assumptions on the form of the correlation functions in
quires rather laborious numerical calculations, _the crystal phase is the actual problem of fundamental phys-
Beginning from Kirkwood and Monrog8], the freezing-
melting transition was considering in the context of the bi-
furcation phenomenon, i.e., the appearafdisappearange
of periodic solutions for the atomic density function of a
statistical systenisee, for example[9-11]). However, the
question about the connection between the bifurcation poi
and the temperature of freezing-melting of actual media w

Although, in view of the above-mentioned difficulties, the
general approach to the theory of freezing-melting seems too
complicated, one can point out the natural domain relating to
the sublimation part of the phase diagram where the second
of the difficulties does not arise. While there are enough
Nextensive experimental data for this domain, in particular
ats,oncerning the thermodynamic properties of the noble-gas

left open[12]. crystals(see, for example, Reff22—-26), a consistent theo-

Atpresent, one .Of t.he most constructive approachgs 0 Nestical interpretation of the sublimation phenomenon has
description of the liquid-solid transition is based on dlfferentbeen absent up to now. It is important to note that no theory

versions of the density-functional theofgee, for example, o ,piimation could, in principle, be constructed in the

[13]), which has been adapted to the problem of freezing by; k of the above-mentioned hes based on th
Ramakrishnan and YussoUff4]. The theory operates only r:::g?;:)cr)]rerg mo%éll. ove-mentioned approaches based on fe

with the one-particle density of the condensed matter but In the present paper, we offer a consisténithout any
needs definite information concerning the binary correlation§itting parameter)stheorg/ of sublimation of the noble-gas
crystals. In Sec. I, being based on the classical equations for
the partial distribution functions of the system with pair in-
*Electronic address: bondvic@mail.ru teraction between atoms, we find a physically correct func-
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[l is devoted to a presentation of the equation for the singlet D D
function in a form demonstrating the existence of an infinite
number of exact sum rules which essentially facilitate thewherew, andD are the parameters scaling the energy and
determination of suitable spatially periodic solutions. Thethe distance, respectively. As it is knoW81,32, potential
problem becomes completely closed if one uses the wellt3) with wy andD values determined from the experimental
known relation for the isothermal compressibility of the sys-data for the rare noble gases can be used for the quantitative
tem. In Sec. IV, the self-consistent equations are solved anatescription of many characteristitthe lattice constants, the
lytically in the low-temperature limit, and the low- cohesive energies, etcof the van der Waals crystals. So,
temperature dependencies of the thermodynamic functions @bnstructing the theory, we will use E@3) with these

the Lennard-Jones crystal are found. Tki8ec. \), the ex-  (known from the gas measureméntslues of the param-
pression for the crystal entropy in the main approximation iseters.

obtained and the sublimation curve is derived. Section VI In the fluid statef(r)=1 andf(r,r’) depends onr—r’|
contains the results of numerical solution of the derivedonly [12,27,28. But in the crystal casef(r) as well as
equations. In Sec. VI, we demonstrate the applicability off(r,r’), etc., are the spatially periodic functions, i.e., for any
the theory for a quantitative description of the thermody-|attice period a it must be f(r+a)=f(r), f(r+a,r’'+a)
namic characteristics of the Lennard-Jones crystal near thef(r r’), etc. Obviously, in the perfectly ordered stéitethe
“classical” domain of the sublimation line. We also discussapsence of intrinsic defects, i.e., Bt0),

different sides of the proposed theory and outline some ways

to develop it further. Finally, in Sec. VIII, a brief summary of f(r) = 12 Sr -a) (4)

the obtained results is given. No“; '

tional form of the pair function for the crystal phase. Section - [r=r’| 12 Ir—r’| 6
W(|r—r’|):{< - : 3

where the sum of Dirac’é functions is carried out upon all
1. BASIC ASPECTS OF THE THEORY (including the triviala=0) lattice periods.

. ) In what follows, it is convenient to present
Following Kirkwood and Monrod 8], the crystal phase

can be described by a spatially periodic singlet distribution f(r,r’)=f(r)f(r")B(r,r'),
function f(r) bearing the information about the local density
of atoms at an arbitrary poimt f(r) satisfies the first equa- f(r,r’,r") =) (e HF")B(r,r',r"), (5)

tion of the BBGKY hierarchy(see, for example, Refs. \yhere the new pair functioB(r,r’) and the triplet function
[27,12,28-30) for the partial distribution functions, B(r,r’,r") must tend to unity when the interparticle dis-

tances increasg27] and also in the crystal stat&r +a,r’
+a)=B(r,r’), etc. Below we putB(r,r’)=B(r-r’) (this
form is necessarily invariant under the translatjori®epre-
sentation(5) means that the main information about the pe-
friodic structure of the crystal is contained in the singlet func-

wheren, is the average number of atoms per unit volume o d hat. f le the f
the system; the energy of pair interaction of atoWv§r tion anc one can expe(_:tt at, for examp.e,t € uncB(_m
' —r’) will be close to unity afr —r’|>D while at lower dis-

-r'|) is assumed to depend on the distance between the par- L . .
ticles, the centers of which are at poimt@ndr’. Equation %ances it will be close to zerGmpenetrahility of the aton)s

: . X N e The simplest way to convert Egél) and (2) into the
(1). conngctgf(r) with thg pair functionf(r,r")=f(r’,r) closed-form system lies in the utilization of the well-known
which satisfies the equation

Kirkwood’s superposition approximatidri.2,2§,
B(r,r’,r”)=B(r =r")B(r =r")B(r' =r"). (6)

As it is known[12], this approximation is well justified for
the gas phase, but for the liquid its validity is worse. How-
—r")dr" =0, ) ever, there exists the statemésee the article by Temperley
in Ref.[12]) that approximatior{6) can again become good
wheref(r,r’,r") is the triplet correlation function symmetri- in the crystal phase. Below, we will confirm this statement
cal with respect to its arguments. The partial functions ardinding a physically correct form oB(r—r’) suitable for
normalized by the conditions V1 f(r)dr=1, quantitative description of the sublimation phenomenon of
VL[ f(r,r")dr’'=f(r), etc., whereV is the volume(macro- the noble-gas crystals.
scopig of the system. The pair function in the fluid phase automatically depends
For the argonlike systems of interdstcluding their crys-  on |r—r’| irrespective of the position’ of the chosen par-
tal statd, W(jr-r’|) can be well approximated by the ticle. However, the eX|stence.of the Iong—r'ange ordgr in the
Lennard-Jones potentifl2,31,32 crystal case forces us to ascribe some definite position to the
chosen particle in the coordinate system where the crystal as
. a whole is at rest. It is convenient to put=0 in the equation
W(|r =r']) = 4woW(|r —=r’]), for the B(r —r’) function. Then, substituting E@5) into Eq.

TVf(r)+n0ff(r,r’)VW(|r—r’|)dr’=0, (1)

TV Er,r)+f(r,r’) VW(r —r’|)+nof fr,r’,r") VW(r
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(2) and taking into account E¢6) and Eq.(1), we come to tion of Eq.(7) without the assumption about the “smallness”

the equation of ny. This procedure is based on the consideration of the
formal limit of “large” r in Eq. (7), which makes it possible

TV B(r) +B(r) VW(r) + ngB(r) f f(r")B(r —r"[B(r")—1] o expandB(r—r") and W(|r -r"|) on powers ofr” in the
integrand. Restricting ourselves to the terms of order zero in

X VW(|r = r")dr" =0, @) the expansions, one can see that the desired solution will be

spherically symmetrical and will satisfy the ordinary nonlin-

where the designation=|r| is introduced. One can verify ear differential equation of the first order,

that atT=0, when the singlet function is given by E@),

B(r)|T:O:(r_D,)I (8) )
. . ) with the parameter
where @(r—D’) is the step function, equal to unity at the

positive arguments and to zero at the negative ones. Here, the . R
constanD’ must be less than the absolute value of the mini- Y= nof Fr)[1 -B(")dr". 19
mal nontrivial period 1.0D [31,32 of the fcc crystal of
interest; we will see below thd’ =D. Note that taking into account the subsequent terms in the
Let us introduce the Fourier transform of the singlet func-€xpansions leads to the fact tt(r) gains the lattice sym-
tion, metry.
At 0<Y<1, Eq.(14) has a continuous solution with the
f zljdre—ik.rf(r) fLo=f 9) proper behavior at ail's. Introducing the dimensionless tem-
v Pk K peratureT” =T/w,, we obtain the desired solution,
In the disordered statef, is zero at allk’s exceptk=0: 1
B(r) = . (16)

fr-0=1. On the contrary, for the crystd, is nonzero also at B ~ .
thosek'’s that coincide with all possible vectobs(including Y+ (1-Y)exd 4W(n/T ]

b=0) of the nodes of the reciprocal latti¢¢8,31-33. For  Solution (16), taking into account Eq(3), has the single
the fcc crystals of the noble gases, the reciprocal lattice isnaximum but the form of this solution at finit€'s differs
bce and, returning to Eq1), it is convenient to introduce the from the “gaseous” onéat Y=0).

dimensionless vectoris=b/b,, whereby is the edge length  In principle, Eq.(15) could be used for the self-consistent
of the Bravais bcc cube. In this case, the fcc lattice constandetermination of the paramet¥t In fact, this equation is a
along the cubic axis is consequence of Kirkwood's superposition approximation.
A Because the latter does not have rigorous grounds, one could
ag=—, (10) hardly estimate the accuracy of conditi(ib).
by Meanwhile, one can point out a way which allows us to
while the connectiorict. [33]) avoid the difficulties associated with the direct applicability
of the superposition approximation. This way consists of the
L use of the well-known exact equation for the isothermal
No= 7162 (1D compressibility of the statistical systefd2,28-30 at the

. ) ] N preservation of the found physically correct forih6) for
is the |mp0rtant “CIOS|ng" condition for qu) ThUS, for the B(r) For the CrystaL this equation is as follows:
crystal

d
()= b, (12) T(ﬂ’) =140 f dr f dr'[H(r,r') — f(Nf(r)] =1
. mp/r V
and, obviously, the amplitudefs depend orL=|L|. " nof dRIB(R) - 1] f2ebot R, (17)
Equations(1) and (7) have to be added by the known L

expressior(see, for example, Refg12,27-30) for the pres- _ ) . _
In the next sections, we will use just this equat{dut not

surep, - ; S
P condition (15)] for the self-consistent determination of the
dW(r - r’)) parameterY [which is a member of the functioB(r) from
nT—— dr | dr'f(r,r")|r - =ngT
P=no f ( )| | d|r _r;| 0 Eq. (16)].
2
_ Mo J dRB(R) dW(R)E f2gbol R (13) lll. THE SUM RULES AND SELF-CONSISTENT
6 dR T EQUATIONS
In the “gas” limit (ng— 0), Eq.(7) has the known solution In what follows, it is convenient to transform E@l) to

B(r)=exd -W(r)/T] which, however, is too rough to be used the Fourier representation. Substituting fot® for f(r,r’)
for the analysis of the freezing problem. One can show anto Eq.(1), taking into account conditiofi1), and introduc-
self-consistent procedure giving a suitable approximate solung the dimensionless parameter of the reciprocal lattice
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boD
o= , 18
2\577 (18
we come to the equation for the Fourier amplitudes,
|
; _bOZL’f L' -RAWR) ,  n_ [~
l(oL')=~ dRB(R)———— € - R=| diB
(oL") . ()R aR 05(6)

=Ll

Here and below we use the designatidB&) and \7V(§),

where£=R/D, equally withB(R) andW(R).
Nonlinear Eq(19) atL # 0 has either trivialcorrespond-
ing to a fluid or, generally speaking, nonzero solutiofs

describing a crystal state of the system. To choose an appro-
priate construction of the nontrivial solutions, it is useful to

determine their functional form &t— cc. To make this, let us
use the Taylor expansiofy _ ,=f —L{(df /dL;)+--- under
the sum in Eq(19). For the fcc crystal, the sums containing
the products of odd numbers of the vectorcomponents in

Eq. (19 reduce to zero, and in the first nonvanishing order

on the derivatives we obtain the differential equation

1 df,
fi+ ———-=0, 21
HB.dLy (21
where the self-consistent quantity 4./ is defined as
1 2 1 -
s * _f rI L, . 22
a WT%L,L(U) (22)
The solution of Eq(21) at L — o,
fi o exp(— B.L?), (23)

has the physical meaning #.=0 only; the series in Eq.
(22) converges, obviously, at finif€'.

PHYSICAL REVIEW E71, 051102(2005

* 1 ! -~
TLf - ?E Ff,_,f,__,_,l(oL’) =0, (19)
L!
where
dA — = =
\(/;lf) [sin(2v2mol’§) — 2\2mol' é cog2\2mol'§)], L’
(20)
[
. df 2 1 df,
AN
dL) |- 37 L d(L'?
2 ¥, }
+ L2 I(oL") = 0. 2
5 d(L,2)3 (oL')=0 (25

Asymptotic behaviol(23) suggests the choice of the ap-
proximate solution of Eq(19) at arbitraryL’s. So, in the
simplest approximation it is naturally to set

fL=exd-BLY, (26)

where the positive parametgris subject to determinatidrat
L=0, function (26), as it should, reduces to unjtyln this
case, according to Eq12),

f(r) — 2 e—,8L2+ib0L T (27)
L

It is important to note that the parametgris closely
connected with the thermal excitations, either oscillatory or
responsible for the defect structure of the crystal. The present
theory, being extremely nonlinear, does not need the special
introduction of such model characteristics of the defect as the
activation energy, etc. In the framework of the classical sta-
tistics atT=0, i.e., in the absence of lattice vibrations and
crystal defects, it is obvious thg=0 and Eq(27) is reduced

From Eq.(19) follows the infinite number of exact sum 0 EQ.(4). Substituting Eq(27) into the first sum rulg24),
rules facilitating a regular procedure of determination of theWe find the self-consistent equation for the determination of
nontrivial solutionsf, . To derive these rules, note that the the parametepg,
term with L' =0 disappears identically from the sum in Eq.
(19), which by itself turns into the identity dt =0. Consid- 3.2
ering f,, f___» as the continuous functions of their argu-

ments, assumind. as the vector with arbitrary small but  The sum over the reciprocal-lattice vectors in E28)
finite lengthL, and employing now the Taylor expansion of conyerges rather well at not too smallHowever, as will be
these functions on the vectbrcomponents, one can present shown below,3~0.1 even afl” ~ 1 (note that the dimen-
thze left-hand side of Eq(19) as the series on the powers of gjonjess temperature of the triple point for argon~i§.7

L* beginning with the first one. Then, equating to zero the[24)). This means that for the description of the sublimation
coefficients at each power af, we can obtain any number henomenon of the noble-gas crystals, it is appropriate to
of exact sum rules for this equation. Let us write out the first, 5 nsform Eq.(28) to a form containing a fast-convergent
and the second of them, sum atB— 0 over the direct lattice vectoas Such a proce-

T- 2B > %e‘zﬂzi(al_) =0. (28)

L+#0

2 1 df,, . dure is based on the equality known as the theta-function
T+—> —fL—5(ol") =0, (24) transformatiorf34] and in application to E¢(27) this equal-
37 oL dL ity gives
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Using Eq.(29) instead of Eq(27), taking into account Eq.

(20), and passing to the dimensionless vectorsra/D of

_ _ _ o the fcc lattice, we can transform E®8) to the following
Representatioii29) is often used at the investigation of the fgrm:

freezing problent(see, for exampld,13,18,35).

a sz 2 2
f(r)=2(5) > e - aheap) (29)

a

BT (OO e B 1 J " 4 dME [ 2w b ]—#(fw—og)z/ﬁ_
-5 fo deg’= - Blé)e 3773’2505 de g B 1 oth- o0 Je =0. (30)

Here, we used the formal invariance W(¢) andB(¢) with  the dimensionless pressures at the sublimation line are small

respect to the change— —£. (even in the triple point of argop” ~ 1073 [26]). This fact
Performing the analogous procedure of transformation tgoticeably simplifies the procedure of determination of the

Egs.(17) and(13) and introducing the dimensionless density lattice constant and other thermodynamic functions near the

n;=n0D3=\e503 and pressurg’ =pD3/w,, we get sublimation line(see below.
«[ 9o 47°20° 2 ~n202218 IV. THE THEORY IN THE LOW-TEMPERATURE LIMIT
T o )T dé&eB(de
T 0

The found solutior(16), taking into account Eq3), pos-

o 1(” . sesses a relevant behaviorTat— 0. In this case, alf =1,
-\ 52 rf dédB(¢) - 1]e ™M~ =0, Y|t_o—1-0 (below we will show this rigorously and
B iioh)—= B (R)}+_o— O(R-D) [i.e., D'=D in Eq. (8)]. As a result,

(3D Eqg. (17) with f(r) from Eq. (4) turns into an identity.
It is useful to consider Eq32) at low temperatures by the

_ 8\2m5/25 oc AWM . scheme stated in Appendix A. Choosing the function
P =V20°T ————7— X f d§§3d—B(§)e"’2‘T &lp EdWé)/dé asG(¢) in Eq. (A1) and acting as when calcu-
3B 0 § lating Eqg.(A2), we obtain
22705 < 1 (” dw 2 . . 3
-2 f dfgsz(i)e wih- o8, p'=120°T —4\509{%— 20%A,,+ —'8(5A8—4406A14) ,
3B ;ohd—= dé 272

(32) (34)

In what follows, the well-known expressidsee, for ex- Where the knowri31,37 fcc lattice sumsA, are defined by
ample,[12,27-30) for the energye per atom of the crystal Ed- (A3). Then from Eq.(?f) atT =0 (when8=0, see be-
will be used. Being transformed with the help of the proce-loW) for the free crystalp =0), it follows that

dure applied above, the expression for the dimensionless en- Ag |6
ergy € = e/w, becomes as follows: %= o= (I) =0.9173. (35)
., 3., 8732 (” o _2,2:2) 12. .
e =-T+ —/zf dEEW(§)B(de ™ ek From Eq.(30), one can determine the explicit temperature
2 B 0 dependence oB at T — 0. Again, applying the scheme de-
- 1" . A , veloped in Appendix A, we transform E(B0) to within the
+ 2\/j022 Tf deaW(&)B(¢)e ™ h =98, main terms to the form
B fioht— 6
« 2Bo 5 _
(33 T - = (220°A1,—5Ag) = 0. (36)

Equations(30)—(32) [simultaneously with Eqs(3) and N
(16)] represent the closed system from which one can estaq
lish a single-valued parametric connectidny means of the
parameterg andY) betweenp’, T', and the lattice constant ﬂZAizT* )
a,=V2D/o of the crystal. This connection leads to an equa- B= 1 “BAA.) 0.0881T . (37
: . IS MY . Ag(11A6A 4 gA12)
tion of state which for giverp” will describe a real crystal
phase at temperatures lower than the freezing temperature It is important to note that solutiofR9) [as well as Eq.
(depending omp’). In the case of the crystal-gas transition, (27)] for the singlet function together with expressi(3v)

ow, changingo in Eq. (36) by ¢!® from Eq.(35), we find
he following expression for the paramej@rat T — 0:
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for B turn out to be exact a" — 0 in the framework of the V. THE EQUILIBRIUM SUBLIMATION OF THE
classical statistics. This statement follows directly from the LENNARD-JONES CRYSTALS
fact that the low-temperature value of the heat capacity in

our theory(see Appendix Ais determined by the classical noble-gas medium, it is necessary to add to E38)~(32)

Dulong and Petit law32,33. - ) ) g i
However, these results are based on the assumption abointe conditions expressing the equality of the chemical poten

the overlinear character of the temperature dependente of lals of the crystal anq it_s saturated vapor at one apd Fhe same
at T 0. The explicit expression fo, derived in Appendix pressure of the coexisting phases. The problem is simplified

B and applicable at low temperatures, confirms this assumpque to the fact that the vapor phase can be described with
tion. Substituting the numerical values of the lattice s#ps good accuracy in the ideal gas approximation. However, one

I ; encounters the following complication. Unlikgand e, the
(see Appendix Ainto Eq. (B3), we obtain entropy per particles as well as the chemical potent{&@3]

To find the sublimation line on the phase diagram of the

Y|y o=1-7.942x 10747372, (38)

u=€-Ts+ nB (42)
0
Thus, due to obtained depender(@8), one can really put

B(¢)=0(£-1) when calculating the contributions linear on
T" into Egs. (30«33). Pay attention to the smallness
(~107®) of the numerical factor in expressi¢as).

are formally expressed through the whole of the correlation
functions of the mediuni28,29. In other words,s can be
written in the form(see, for exampld,28])

Besides, the theory allows us to calculate the coefficient mT \321 1
of thermal expansiom of the Lennard-Jones crystal in the $=5/2+In ori2) |t TV drw(r)f(r)
limit T°— 0. Although the result of the calculation does not 0
follow the Nernst theorembecause the nonquantum ap- No , , ,
proach is used33]), it seems rather instructive. Yoy A Waolr,r)Hf(r,r’)
We will base the calculation on expressi@4). Now, the 5
zero-temperature value® from Eq. (35) should be substi- No , " A P,
tuted into the terms-T" and~ 8 in Eq. (34). Other terms on " 6TV dr | dr” | drWs(r,rt, Rt & e

the right-hand side of Eq34) should be expanded up to the (42)
first nonvanishing term~ éo/ 0% = (- 0'?)/0?. Because

we are interested in the thermal expansion of the free crystatere, “the ideal gas” part of the entrop$3] (with m as the
the pressure given by E¢34) must be equal to the pressure atomic maskis represented explicitly and the so-called cor-
of the saturated vapor being in the thermodynamic equilib+elation potentials of the groups of particles are introduced,
rium with the crystal. But the vapor pressureTat—0 be- frr')

haves according to the Clapeyron-Clausius equafRs], Pi(r)=-TInf(r), \Ifz(r,r’):—Tln[;],

i.e., as~exp(—8.607/T") (see the next sectignSo, atT" f(r)f(r’)

— 0 one can neglect this exponentially low vapor pressure
and write the equilibrium condition for the crystal in the

Wo(r,r' r")=-T In[ f(r,r’,r”)f(r)f(r’)f(r”)}, e

form f(r,r’)f(r,r")f(r’,r”)
[ 32 (43)
X As ,,22A6A14 — 5AgA12 As oo
p = A_T (1+°11A6A ~BAGA )+12A6<A_> ) Nevertheless, the problem of interest can be resolved
12 14 12 12 quantitatively. In fact, in Kirkwood’s approximatio6) we
=0. (39 haveWs(r,r’,r")=0 and so the nex@fter the two-particle

nonzero contribution into the entropy will correspond to the
Proceeding to the relative change of the lattice constanfour-particle correlations. But taking into account the latter
saglal)=-5010© (al'=\2D/0"), we find from Eq.(39)  ones oversteps the limits of the accepted approximation
the low-temperature value of the linear coefficient of thermabased on the equations for the singlet and pair correlation

expansion of the crystal, functions. So, we can restrict ourselves to the next form of
the entropy of the crystal phase,
a(o)zi dag __ A 277A6A14_20A8A12_ (40) r mT\*21] 1
8o JT |10 12WpA2 11AcA;,— 5AGA, s=2+Inl |5 =3 el TV drf(r)in f(r)

= i (0) n
Er';'?zgir(?“ E{llargor(wo 121 K [31,32), we obtaine - 2—\0/ J dr fdr’f(r)f(r’) X B(|r =r')InB(|r =r’|).
The founda'? is approximately half of ther value mea- (44)
sured experimentally at the triple-point temperature of argon
[24]. In Sec. VI, we will show that our theory leads to a Pay attention to the fact that the structure of E4¢) re-
noticeable growth ot of the Lennard-Jones crystal with the sembles somewhat the form of the thermodynamic potential
temperature. used in the density-functional theory of freezirig]. Note,
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however, that in the present approach either the singlet or thee will search two sets of solutionsy, 81,Y; andos,, B,,Y,
pair correlation functions of the crystal are determined self-at somewhat distinguishing’’s for each temperature.
consistently, without the use of any excess information about Findipg the parameters, o, andY, we, in principle, can
the two-body direct correlation function of the correspondingobtainp either positive or negative. Although the negative-
liquid. ness of the pressure is the feature of a metastable[8@lte

Let us turn our attention to the first integral term on thelin itself the possibility of the description of such states by the
right-hand side of Eq44). Using representatiof29), which  theory undoubtedly demonstrates its completeness. It is im-
at B<1 is the sum of thes-like functions, one can replace Portant, however, that for any equilibrium physical situation,
the integral by the sum df equal integrals, constructed with the pressure, of course, will be positileee Eq(47)].
the help of any of these functioiii=nyV is the whole num- The low-temperature analytical expressions obtained in

: . _ Sec. IV are suitable & #0 as the zero approximations for
ber of the nodes in the volumé). In view of the fast con We corresponding numerical solutions of E9)—(32). The

;/r? égviﬂgif t:fe'nﬁger:“%e%?ﬁ] C?r? ;?;%ngé;e&r:efgg;ﬁn Ofumerical analysis of these equations has been realized by
pace. ' 9 ' the use of the computer packag@rHEMATICA 4.2. The val-

at < 1 . o [ . .
A ues of the terms with £h<7y2 in the lattice sums were
1 T \32 found by direct numerical calculation taking into account the
y | arfOinf@)=inj 2{ =7 (45 fcc symmetry. The residues of the sums were replaced by the

) ] ) corresponding integrals in tHAespace by analogy with what
As to the last term on the right-hand side of B44), it has peen made when transferring to EBR). In this case,

can then be reduced to the form rather high accuracy of the calculations was achieved. The
2751253 [~ 5 2a numerical procedure was considered as realized when the
Tf déePB(9)IN[B(&)]e™™ o*E1p absolute values of the left-hand sides of E@9) and(31)
B 0 were found to be less than 70
o2 We should address separately the calculations by #g,

-\ == %f decB(OIN[B(HJe™h-79%F  (a6)  which, in fact, represents by itself the differential relation
B2 hao NY - between the thermodynamic quantities. It is essential, how-
] ) ) ~ ever, that we know the exatin the framework of the clas-
At B<1, the functiorB(¢) in the integrands under the sum is gjcg| statistickvalue of the isothermal compressibility of the
close to unity in the essential domain of integration. So, on§ ennard-Jones crystal @ =0. Using this value as the zero
can replaceB(§)In[B(£)] by B(£§)-1. After that, comparing approximation in Eq(31) at some given low temperature,
with Eq. (31) and using the results of Appendix B, we esti- for example atT"=0.25, we will carry out the numerical
mate Eq.(46) as~—T A,/ (8A) «—0.01T". calculations ofoy, 8;,Y; and o, 85, Y,. From here, we will
Now, substituting Eq(45) into Eq. (44) and neglecting find a new(corresponding to the first approximatjovalue
Eq. (46), we can write the conditiom=uc (the quantities  of the isothermal compressibility at =0.25. After that, we
relating to the gas phase are characterized by the subscri@ill fulfill the calculation with this new value of the com-
“G") using the known[33] expressions for the thermody- pressibility and, using the results of the calculation, we will
namic functions of the ideal gas. Then, neglectplgn, in  find the isothermal compressibility in the second approxima-
comparison withp/ng we find the following equation in the tion. By comparison with the calculations of the first ap-

dimensionless units: proximation, we will make sure there is good convergence of
& o\ 32 the numerical procedure used.
Inp' ==-4+ In{(—) 031'*} , (47) Then, we choose the following valu®:=0.35. Substitut-
T ing into Eq.(31) as the zero approximation the value of the
wheree' is determined by Eq33). isothermal compressibility found in the second approxima-

Equation (47) (together with the equations obtained in tion at the prgviousT*=0.25, temperature, we will repeat the
Sec. Il determines the theoretical sublimation line on the@P0ve described procedure of finding the sets of solutions

phase diagram of the Lennard-Jones medium. and the isothermal compressibility at=0.35.
In this way, we have calculated the pointed out values at

T°=0.25, 0.35, 0.45, 0.55, 0.65, and 0.68T8e last value,
VI. THE NUMERICAL CALCULATION SCHEME AND being multiplied byw,=121 K [31,32, corresponds to the
RESULTS temperature 83.2 K of the triple point of argp24]). In ad-
dition, the formal calculations have been performed also at

To calculate the thermodynamic characteristics of the

Lennard-Jones crystal in the “classical” domain of temperaEhe temperaturel =0.75, which exceeds the triple-point

tures, we have undertaken the numerical solution of Eqst_emperatu_Lell_tof the Lennard-Jones media. The isothermal

(30—(32). The strategy of the calculations is as follows. Let compressibility

us fix some temperature and find the valygsr, andY as 1 (%) ~ Djl(%) ~ D_?’i( o
ons a o) op"

the sublimation pressuré2) must be close to zerf26]. P P/ P

Keeping in mind the calculation of the isothermal compresshas been found from the results of the numerical calculations

ibility of the crystal in the vicinity of the sublimation line, by means of the replacement of the derivative by the ratio of

the solutions of Eqs(30) and(31), and the requirement that XT= n_o

= < ) (48)
T WO nO WO g T™
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TABLE I. The numerical values of the parameters of the distribution functions, together with the ther-
modynamic values of the Lennard-Jones crystal in the vicinity of the sublimation (lime first
approximation.

*

T 0.25 0.35 0.45 0.55 0.65 0.6875 0.75
o1 0.9049 0.9012 0.8969 0.8919 0.887 0.8851 0.8815
1078, 2.335 3.283 4.283 5.373 6.529 7.005 7.832
10%(1-Y,) 0.187 0.376 0.603 1.018 1.719 2.13 2.694
lOzp*1 0.05575 0.8624 5.063 0.4857 0.4941 0.6986 0.7613
oy 0.9047 0.9011 0.8965 0.8918 0.887 0.8849 0.8813
1078, 2.341 3.287 4.302 5.385 6.536 7.017 7.851
10%(1-Y,) 0.188 0.377 0.604 1.019 1.72 2.132 2.698
102p; -3.412 -0.664 -0.1029 -1.633 —-0.5189 -0.9181 -1.314
102((?n;/(7p*)-|-r 1.874 2.031 2.173 2.501 2.735 2.854 3.082

the finite differenceg(oy—o,)/(p;—p,) ]y (with 1/0 being  atT>©/4, where®y, is the Debye temperature of the crys-
intermediate between &4 and 1/, at each temperature tal; ®5=85 K for argon[32].

The numerical calculation of the parameters according to Numerically, the difference between the calculated and
the above-described scheme led in the first approximation toeasured temperature dependenciesapfor argon even
the results shown in Table I. near the triple point does not exceed 0.%F%g. 1). It is

Remember that &t =0 for the free crystalwhenY=1,  useful to note that the difference between the dashed line and
p'=0) we have ¢/ from Eq. (35 and (dny/dp’)r—o the experimental data near the triple paifig. 1) is ~1%.
=A,/ (4A5)=0.014 52. In Fig. 2, the experimentalaccording to the data col-

To illustrate the above-mentioned statement about théected in Ref[22]) values of the isothermal compressibility
good convergence of the numerical procedure, we give if the crystal argon at the saturated vapor pressure are pre-
Table Il the parameter values calculated in the second apsented. The results of calculation according to the thesey

proximation atT"=0.75[compare the values d#ny/dp’)r Eqg. (48) and Table ] are represented by the crosses and are
in Tables | and 1). connected by the smooth curve. Again, as in Fig. 1, one can

see good quantitative agreement between the theory and ex-
periment at temperatures above 30 K. But when approaching
the triple point, the theoretical results are found to be under-
In Fig. 1, the experimentdtollected in Ref[24]) values ~ €stimated in comparison with the experimental datatice,
of the lattice constani, of argon at the saturated vapor however, the rather large-scale scatter of the experimgstal
pressures are given. Crosses show the theoréseal Table Values reported by different authars
) values ofay=12D/c, whereD=3.40 A for argon31,39 Finally, in Fig. 3 the experimentdfrom [26]) points de-
(with o situated betweenr; ando, at each temperatureThe  termining the dimensionless sublimation lines of three clas-
calculated values o, are connected by a smooth curve in sical noble-gas crystals are collected. The crosses show the
the temperature domain where the experimental data are wéfteoretical[with formulas(47) and (33) taking into account
described by the theory based on the classical statistics. e data of Table]lvalues ofp’. The curve, which rather
addition, the dashed line in Fig. 1 shows the hypothetical ~Well a_pproximates the theoretical points, is described by the
the zero approximatiortemperature dependenceagfif one ~ equation
should use the zero-temperature val®=3.62x 104 K1
[see Eq(40)] in the whole temperature range.
The quantitative closeness between the theory and experi-
mental data aT =30 K, or T" =0.25(Fig. 1), means, in fact,
that the domain of applicability of the proposed classicalwith \"=4.527 andy’ =8.104. Note that the curve fitting the
approach begins frorli" =~0.25. It is interesting to note that experimental data in Fig. 3 in the béby the method of least
the temperature at which, comes to the classical behavior squaresmanner is presented [26] in the form of Eq.(49)
is consistent with the results of the Debye mof8] pre-  with \"=5.302 andy” =8.206. Pay attention to the proximity
dicting the classical behavior of the specific heat of the solicf the theoretical and experimentgl values in the discussed

VII. DISCUSSION OF THE RESULTS

*

* *_q_
Inp =\ - (49

TABLE Il. The same as Table | in the second approximatidi=0.75.

oy 108, 10%(1-Yy)  10%p; oy 108, 10%(1-Y,  10%p,  10%ang/op’)+

0.8816  7.836 2.932 1.79 0.8813  7.873 2.94 -2.209 3.083

051102-8



STATISTICAL THEORY OF NOBLE-GAS CRYSTALS.

544 X%g\ E

542

&
oy
54 -~ -
A%.+ //
sar * // T
- //
536 o L .
/ -~
. -
3340 - i
-~
///
5321 - 4
&% .

53 mewes it - -

a ()

s;mi P _

1 1 1 1 1 1 1 1
My 0 50 60 0 E o0
TK)

FIG. 1. The temperature dependence of the lattice constant ol_*
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experimental data df24]; O, X, ¢, A indicate the data of other
authors shown ifi24]. The results of calculations according to our
theory are denoted by and connected by a smooth curve in the
region of applicability of the classical statistics. The dashed straight
line corresponds to the theoretical calculation in the zero approxi-
mation[see Eq.(40)].
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T

ot the sublimation pressure vs temperat(irethe reduced unijsfor

+ Ar (0), Kr (O), and Xe(®). The results of calculations according
to our theory are denoted by and connected by the curyeepre-

+ + sented by Eq(49) with the parameter values given in the text

. L # ] FIG. 3. The experimentalaccording to[26]) dependencies of

temperature domaifiat T'=0, the dimensionless heat of

T / | sublimation of the Lennard-Jones crystal coincides with
/* - €'|1-o=A2/(2A1,) =8.607; see EqgA4) and (35)].
sl . " | Figure 3 is of particular interest. The fact that the theoret-
ssase ® ical (in the dimensionless unijtsublimation line passes close
enough to the experimental points for the “classical” noble-
5k I I I I I I I I gas media may mean that the terms taken into account in the

expression for the solid-state entropy are, really, much more
essential than the rejected ones. Thus, the general arguments

FIG. 2. The isothermal compressibility of crystal argon vs tem-Of the theory get the additive confirmation.
perature. Solid circle$®) represent the experimental data[2#]; As to the observed disagreement between the theory and
O indicate the data of22]; X, ¢, A indicate the data of other the experimental data in Figs. 1-3, at low temperatures it is
authors shown ifi22]. The results of calculations according to our conditioned, as has been already mentioned, by the quantum
theory are denoted by and connected by a smooth curve in the effects. The conventional quantum theory of solids is well-
region of applicability of the classical statistics. developed in the harmonic approximatif82,36,31, but it

051102-9



V. N. BONDAREV PHYSICAL REVIEW E71, 051102(2005

cannot be used, in principle, for the purposes of the presersiolutions. However, the bifurcation problem in this case
paper(in order to describe, for example, the thermal expanturns out to be absolutely irrelevant, because the additional
sion of the crystgl On the other hand, the anharmonic pho-branch by itself demonstrates a nonphysical behavior which
non theory(see, for example[37]) operating with many- s inconsistent with the limiting forni4). To verify this, we
phonon processdssually with three- and four-phonon ones  take notice of the fact that in the limilt =0 (andp”=0), Eq.
meets the well-known difficulties, the first of which is com- (30), besides the physically correct soluti¢87), allows a
putational. So, the construction of a quantum analog of the,onzero solution fo. The latter, according to the numerical
theory proposed in the present paper is the actual but negcylations, is found to be equal to 0.1797. In this case, for
simple problem. o, we obtained the value 0.9628, which contradicts the exact

One more reason for the disagreement can be stipulat he framework of the classical isti |
by the use of the pair Lennard-Jones potential with the “gasﬁjn the framework of the classical statisticsesult (35).

values of the parametef82]. For the condensed matter, the Hence, we come to the conclusion that the additional branch

role of three-body forces could also be found to be importanfjoes not have a physical mee.m!ng.and must be, rejected.
[12,37. From here one more, albeit indirect, conclusion follows.

It is useful to note that the theoretical sublimation CurveAS we have s'hown in this paper, the_ only smglet and pair
[Eq. (47)] can be formally continued beyond the triple point functions leading to t_he exact results in _the limit of the per-
temperature(see Tables | and )l In this sense, the triple fect cr_ystal can provide a correct descrlptlo_n of the crygtal
point is not a singular one for the thermodynamic functions State, including the phenomena of sublimation and melting.
But to locate it, one must study the phase equilibrium be-S0, any attempt to study the problem of freezing by model-
tween the crystal and the liquid. In light of the results pre-ing the pair function of the crystal with the help of one or
sented in this paper, now we have the possibilifgparently ~another suppositio(for example, starting from the pair func-
for the first timg to approach the problem of melting from tion of the liquid must be considered extremely carefully.
the positions of the consistent theory of the crystal state. Finally, let us outline briefly the ways to further develop
Concerning the theory of liquids, at present one has a nunthe theory. In the first place, from Figs. 1-3 one can see a
ber of sufficiently valid approaches in this fie[##—7]; see  tendency to deviate between theory and experiment. This
also, for example, Ref$38—40). It gives us hope to achieve may indicate that the simplest forf26), based on the first
a consistent description of the phase equilibrium for thesum rule, is no longer enough to lead to the precision de-
Lennard-Jones medium in the whale T plane. ~ scription of the “high-temperature” experiments. So, to make

Let us touch upon the question of the bifurcation linethe theoretical results more precise, it is necessary to use the
which separates the domain of possible existence from thgacond sum rule. In the second place, an extension of the
domain of the absence, in principle, of the crystal solutionspeory in the case of crystal-liquid equilibrium seems to be
at the ph'alse _d|agram of the_Lenna}rd—anes system. In faGhe most important continuation of the investigations started
the |dent|f|cat|c_)n of the_meltmg p0|nt_W|th the bifurcation in this paper. In the third place, having in mind the low-
point was realized, beginning from Kirkwood and Monroe temperature phenomena in the crystals, it would be desirable

[8], by many authorgfor example,[9—11]). In the commu- ot X X
nication [41] presented by the author at the International® develop a quantum-statistical analog of the theory given in
the present paper.

Conference on Theoretical Physi¢¥H-2002, Parig the
phenomenon of bifurcation was analyzed in connection with

the freezing problenhhowever using conditioil5), but not VIIl. CONCLUSIONS

the strong relatiori17)].

On the other hand, using some model form for the pair Starting directly from the equations for the singlet and
function and studying the equation for the singlet function ofpair correlation functions of the classical statistical medium
the statistical system, the authors of Refl] came to the with pair (for example, by Lennard-Jonemteraction be-
conclusion that the physical characteristics in the bifurcatioriween atoms, for the first time we constructed a consistent
point do not correspond to those taking place in real sub¢free of any fitting parametersheory describing the thermo-
stances at melting. dynamic properties of the noble-gas crystals. The equation

In fact, this conclusion is consistent, qualitatively, with for the singlet function is presented in a form demonstrating
that following from the results of the present paper. In fact,the existence of an infinite number of exact sum rules for the
because at a given temperature the crystal must beconamplitudes of space-periodic solutions. It is shown that al-
harder when the pressure increases, one can expect the bifueady the first of the rules leads to the solutions which repro-
cation of the solution at lowering pressure. As one can seduce the exact form of the singlet function in the crystal at
from Table I, the crystal solutions exist in the negative pres-absolute zero. For the pair function, we obtained the self-
sure domain as weli.e., formally, when the crystal is under consistent, physically correct form depending on the param-
a uniform extension This means that at the bifurcation line, eter determined by the integrated statistical characteristics of
the pressure will surely be negative, at least To,k<0.75.  the system. To make the theory completely closed, we used
Thus, we arrive at the definite conclusion that the bifurcatiorthe known exact relation for the isothermal compressibility
points do not have a direct relation to the melting-freezingof the system. As a result, the equation of state of the crystal
phenomenon for real systems, at least in the vicinity of thecan be recovered. The theory allows us to obtain the analyti-
triple point of the noble-gas media. cal expressions for the fundamental thermodynamic charac-

Besides, using the calculation scheme described, one caeristics of the crystal in the main approximation, whereas
make sure that Eq$30)—(32) have an additional branch of subsequent numerical calculations lead to more exact results.
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These results agree rather well with the corresponding ex- A
perimental data for argon in the temperature region where A= 2 —h=lhl. (A3)
the classical statistics is applicable. Further, we obtained the h+#0

expression for the crystal entropy in the main approximationy last, substituting® from Eq. (35) into the term~3 in
and constructed the sublimation curve, which with satisfacEq_ (A2) and also taking into account E(R7), we obtain
tory accuracy reproduces that measured experimentally for

the classical noble-gas media. The analysis of the phenom- € =3T +20%0%A,— Ag). (A4)

enon of bifurcation of the found solutions showed that the

bifurcation points are placed outside the domain of pressureps‘S a result, we fmd from EqA4) that the heat capag:lty per
atom of the classical crystal at constant voluxhéor, iden-

and temperatures typical for the freezing of the real noble-. ) L .
- : lly, at constantr=0¢'?) in the limit T'"—0 is equal to
dia. Ways to further develop the th d caly, a . ne. . :
gas media. Ways fo further develop the theory are discusse de 1JT ) 417=0=3, which coincides with the classical

Dulong-Petit valug32,33.
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L[ ong 1 - exg AW/ a)/T']
APPENDIX A T(&p*>*=(1-Y)><Z .
T oY+ (1= Y)exd AMA o) T ]

At T"—0, the power-type terms of in Egs.(30—(33) (B1)
appear from the integrals containing tlélike functions
exd—mAh-o®)?/B] in the integrands witth#0. To find ~ The sum in Eq(B1) diverges afl’ —0 because a vast do-
such terms, let us use the following expansioBat O: main of the lattice vectors with=1 contributes to the sum.

" ) In this case, one can replace the sum by the integral keeping
f dgG(g)e—wzf#(g— Wo)2/p — 1 \/E[G(g) + B dG() in mind that the Bravais cube of the fcc lattice contains four

e oV 4m%0? d&? primary cells[33]. Besides, we can puf=1 in the terms

..
&hlo X ﬁn* 4 ® . .
T ( 9) = (1= V)4 X f dhh?[1 - eMWMMoIT .
P/ 2 1

under the sunfintegra) in Eq. (B1). Then the latter turns
(A1) into the following equation:

where G(§) is any function having no singularities at the

points é=h/o. (B2)

The function G(§):§\7\/(§)B(§), which is present in the . o
integrands of the terms under the s(@8), possesses such a !N the limit T'—0, as one can see, the expression in the
property and alsdtaking into account the overlinear tem- Square brackets in the mtegraT/d can be apgro*ﬁ;gately re-
perature dependence & it is enough to putB(ﬁ/o):l. placed by unity at(l/o)<{<2 3T. ; at_2_1 Thsg .
Then we have from Eq33) in the low-temperature limit <, one can expand the exponential retaining two leading

terms of the expansion. After that, the right-hand side of Eq.

- 6 6 30°8 6 (B2) up to the main terms becomes as followsy2653(1
€ =21 +207(0°Arz= Ag) + = 5-(2207Aa4 = SAg), -Y)/(3\T'). At last, finding the derivative(dp/dng)r o
(A2) =4A2/ A, with the help of Eqs(34) and (35), we obtain
3312
whereAg=14.45,A3=12.80,A;,=12.13, andA,,=12.06 are (1-Y)|r 0= ——25T32 (B3)
the known numerical values for the fcc lattice suig$,32), 64mAg
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